How Will NSLS-II Serve Infrared Science?

Larry Carr, Lisa Miller, Randy Smith NSLS Infrared

and the NSLS-II design team

Funded under contract: DE-AC02-98CH10886

U.S. Department of Energy Office of Basic Energy Sciences

Synchrotron Infrared Source Qualities

High brightness

- ~ 3 orders of magnitude higher than conventional "white" IR spectroscopy sources.
- Needed for throughput limited spectroscopy (microspectroscopy)

Broad spectral coverage

- everything from visible down to microwaves, though weaker at long wavelengths.
- Compatible with high-performance FTIR spectrometry.

Pulsed output

- 10s of picoseconds out to nanoseconds
- Time-resolved spectroscopy / dynamics

High Brightness Enables Throughput Limited Techniques

Microscopy at diffraction-limit

Spectroscopy of materials under extreme conditions:

- diamond anvil cells
- complex cryostats & magnets

Restrictive angle of incidence

- Grazing incidence
- Attenuated total refl. (ATR)
- Ellipsometry

Very high (spectral) resolution (requires small collimating aperture)

$$r = f (2\delta v/v)^{1/2} = 2 \text{ mm}$$

for f = 20 cm, $\delta v = 0.001$ and v = 20 cm⁻¹

Worldwide Synchrotron Radiation Facilities for Infrared

Synchrotron Infrared Brightness

If electron energy is sufficiently high (> 100 MeV) then IR brightness depends only on:

- <u>beam current</u>
- source size/emittance
- extraction aperture

Recently Upgraded VUV/IR Beamlines

IR Performance of VUV Ring: 90x90mr Extraction

Infrared Performance: NSLS VUV Ring

Pulses for Time-Resolved Spectroscopy

- Synchronized M-L laser (<10 ps pulses)
 VUV ring pulses (down to 300 ps).
- Need shorter synchrotron pulses (down to 100 fs, but any gain is useful)

Existing IR Programs/Activities

Biological and Life Sciences

- vibrational microscopy/imaging of proteins and cell structures
- bone mineralization osteoporosis/osteoarthritis
- chemistry of diseased tissues at the cellular level

Environmental and Space Sciences

vibrational microspectroscopy of soils and interplanetary particles

Corrosion and Catalysis

grazing incidence spectroscopy of molecular layers on metal surfaces

Geosciences

 spectroscopy and microscopy of molecular solids and minerals at extreme pressures and temperatures.

Materials

- infrared conductivity of complex metal oxides.
- dynamics (time-resolved) in superconductors and nanomaterials.
- spectroscopy of spins and magnetic resonances in ordered solids.

Infrared Considerations for NSLS-II

Existing NSLS & VUV/IR Ring

- high current (high brightness), ~ 1 ns duration pulses
- 25 years old (increasing maintenance for linac, booster, RF systems)
- ring chamber and magnets remain reliable

NSLS-II: New Ultra-Bright Storage Ring for X-rays

- 500 ma (top-off)
- new injector
- 500 MHz
 - at least 10X shorter bunches
- <u>but</u> large aperture ports could be problematic
 - estimate 20 mrad from geometric considerations.

Infrared on the NSLS-II Main Ring?

Plan: Relocate VUV/IR to NSLS-II: Infrared Ring

- Maintain investment in ring chamber, magnets and beamline front-ends
- NSLS-II -> new injector (Linac)
 - Top-off injection for IR too
 - can tolerate modes with shorter lifetimes
 - brighter mid-IR beam
 - higher average current (1 A)
 - short bunch lattice
- New RF
 - 500 MHz to match NSLS-II systems
 - intrinsically shorter bunches (10s of picoseconds)
 - possible coherent mode?

The NSLS-II Project

NSLS-II Infrared Ring

Option 1: 200 MeV linac + Booster Inject IR ring at 200 MeV Option 2: 3 GeV linac Inject IR Ring at up to 800 MeV

Infrared Brightness Comparison

Possible Infrared Beam Ports

Extended Source for Small Array FTIR Microspectrometer

- Rapid scan FTIR with 16 element array detector
- Full spectral range MCT

Rough / Strawman Elevation Drawings

Rough Infrared Ring and Beamline Strawman / Schematic

- Infrared beamlines extract light from ring (below grade)
- Endstations on upper level (stable concrete support)
- Most of ring covered (additional useful floor space, walkways)

Other Possibilities: Coherent Emission

- Abo-Bakr et al demonstrate stable coherent emission from BESSY II (PRL March 2003)
- Berkeley Lab proposal for CIRCE (storage ring primarily for coherent far-IR)

Summary & Questions

Current plans call for relocating NSLS VUV/IR Ring to NSLS-II

- Space for additional ports and beamline endstations
 - Let's make sure it's all stable!
 - beamline hutches for environment stability?
 - extended source based on 200 mrad horizontal (two U10 or U2 ports)?
 New Imaging Capability
- Top-off mode for higher current and higher brightness
 - how often?, how stable?
- 500 MHz RF
 - shorter bunches … modes for very short?
 - coherent emission?
- At least 200 MeV
 - adequate for IR and Visible, but may need more to avoid excessive topping-off
 - higher energy -> undulators could serve as tunable pump for time-resolved

